Friday, June 11, 2010

Networking Devices - BRIDGES

Bridges are used to divide larger networks into smaller sections. They do this by sitting between two physical network segments and managing the flow of data between the two. By looking at the MAC address of the devices connected to each segment, bridges can elect to forward the data (if they believe that the destination address is on another interface), or block it from crossing (if they can verify that it is on the interface from which it came). When bridges were introduced, the MAC addresses of the devices on the connected networks had to be entered manually, a time-consuming process that had plenty of opportunity for error. Today, almost all bridges can build a list of the MAC addresses on an interface by watching the traffic on the network. Such devices are called learning bridges because of this functionality.

Three types of bridges are used in networks:

  • Transparent bridge Derives its name from the fact that the devices on the network are unaware of its existence. A transparent bridge does nothing except block or forward data based on the MAC address.

  • Source route bridge Used in Token Ring networks. The source route bridge derives its name from the fact that the entire path that the packet is to take through the network is embedded within the packet.

  • Translational bridge Used to convert one networking data format to another; for example, from Token Ring to Ethernet and vice versa.

Today, bridges are slowly but surely falling out of favor. Ethernet switches offer similar functionality; they can provide logical divisions, or segments, in the network. In fact, switches are sometimes referred to as multiport bridges because of the way they operate.

Networking Devices - SWITCH

Switches are the connectivity points of an Ethernet network. Devices connect to switches via twisted-pair cabling, one cable for each device. The difference between hubs and switches is in how the devices deal with the data that they receive.


Whereas a hub forwards the data it receives to all of the ports on the device, a switch forwards it only to the port that connects to the destination device. It does this by learning the MAC address of the devices attached to it, and then by matching the destination MAC address in the data it receives. Figure 1 shows how a switch works.

Networking Devices - HUB

At the bottom of the networking food chain, so to speak, are hubs. Hubs are used in networks that use twisted-pair cabling to connect devices. Hubs can also be joined together to create larger networks. Hubs are simple devices that direct data packets to all devices connected to the hub, regardless of whether the data package is destined for the device. This makes them inefficient devices and can create a performance bottleneck on busy networks.

In its most basic form, a hub does nothing except provide a pathway for the electrical signals to travel along. Such a device is called a passive hub. Far more common nowadays is an active hub, which, as well as providing a path for the data signals, regenerates the signal before it forwards it to all of the connected devices. A hub does not perform any processing on the data that it forwards, nor does it perform any error checking.

Hubs come in a variety of shapes and sizes. Small hubs with five or eight connection ports are commonly referred to as workgroup hubs. Others can accommodate larger numbers of devices (normally up to 32). These are referred to as high-density devices. Because hubs don't perform any processing, they do little except enable communication between connected devices. For today's high-demand network applications, something with a little more intelligence is required.